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ON STEIN'S ESTIMATOR

Khursheed Alam* and James S. Hawkes

Clemson University

ABSTRACT

Stein's estimator for k normal means is known to
dominate the maximum likelihood estimator fork >3 if the
loss is quadratic. 1In this paper we have derived certain
optimal properties of Stein's estimator for a more general

loss function. It is shown that the estimator is minimax

in an empirical Baves sense for the generalited loss function.

Kev words and phrases: Maximum Likelihood Estimator; Baves
and Minimax Estimators; Loss Function.
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1. Introduction. Let X = (Xl, Py Xk) be a vector of k

independent observations from k normal populations, where
Xiglﬂ(ei,l), i=1, ..., k. We consider the problem of

estimating the vector 6§ = (81, cee, 8 Let

K

500 = (50, «evy 6,(X))

where éi(X) is an estimate of 9, - Let the loss be squared

error, given by

K
(1.1) L(8,8) = & |[&-6]]° = % } (51'91)2'

e

i=1

The maximum likelihood estimator 60(X) = (X ., Xk) has

1’
risk equal to

R(9,5°) = E, L(s,s%) = 1

for each 9. James and Stein (1961) showed that the estimator

*
§ (X), given by

% e
(1.2) 5. () = (-5,

b} *
<

where S = {[X!|~, has risk R(8,5 ) <1 for all values of &,
if k>3. That is, 6 (X) dominates 5°(X). Therefore, the
maximum likelihood estimator is inadmissible. Even though
only Xi seems to be relevant to 61’ it is interesting to note
that tlie estimate SI(X) depends on the entire vector of
observations X,

The surprising result of James and Stein has stimulated

considerable vesearch in the last two decades, on the prohlem
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of estimating the mean of a multivariate normal distribution.
For reference to some recent work in this area, see Alam (1975)
and Berger and Bock (1976). Almost all the known results
assume a quadratic loss, chiefly for the reason that nonqua-
dratic loss is difficult to handle mathematically. In this

paper we have deviated from the general trend. We consider a

more general loss function, given by

k Zm

(1.3) L(e,8) =

| -

-

where m <% is a positive integer, and obtain the risk of
6*(X), using the generalized loss function. In the sequel we
shall denote by R(6,8) the risk of an estimator 8(X) with
respect to the loss (1.3).

The maximum likelihood estimator has a constant risk,

given by

3

-

(1.4) R(8,6%) = 2= T(m+d)

v

=

* . 2

On the other hand, R(8,8 ) is a function of |9} for m = 1.
% & *

For m>1, let R (},8 ) denote the average value of R(7,3 )

with respect to the distribution of %, uniform on the sphere
- Lol 2
(13) llelt = A

with center at the origin and radius equal to v\ . In the

following section it is shown that

% LR .0
(1.0) R (A,3 ) < R(9,3)

for all values of ), if k is sufficiently large.




The proof of (1.6) involves very difficult computation.

It is perhaps the strongest result we can show for Stein's
%*
estimator, since § 1is designed for a spherically symmetric

2 loss, whereas (1.3) is spherically non-symmetric. On the

other hand, if there exists an estimator which has smaller !

*
risk than § with respect to (1.3), its risk function is

likely to be mathematically intractable. Therefore, the

1 inequality (1.6), which is the main result of this paper,

is significant, even though we should look for a spherically

Voo .
bl e

non-symmetric estimator.

b o




Let m = 1. Consider a Bayesian approach. Suppose that
the ei's are independently normally distributed with mean
zero and variance A. A Bayes estimator of 6 with respect to

the given prior is §(X) where

(1.7) éim = (1-B)X, , i%1, ..., k
B = 1/(1+A).

The Baves risk is equal to 1-B.
If B is not known then S is .a sufficient statistic for
B, and BS is marginally distributed as xi , chi-squared with

k degrees of freedom. Let é(S) be an estimator of B.

Substituting B(S) for B in (1.7) we get an empirical Baves

estimator °(X), given by

(1.3) ;,i«.‘() = (1-BIS)Y, , =1, ..., k.

Let ;(B,l) denote the Baves risk of 4. The difference between

)

;(B.SL) and the Baves risk is equal to B, and

L1 SiB,) - o(B,3) _ 2 BIT)-3
- B

5
)2

3
where BT 7

.. v
Yor BtS: = hzl we have (X) = . [(X), and the letft side of

Loy is equal teo &0 Irfron and Morris (1373) have shown that
I




the minimax value of the right side of (1.9) is equal to

2 . . . . . .
—. Thus Stein's estimator is minimax in an empirical Bayes

k
sense, considering the problem of estimating B with loss

function, given by

L(8,B) = (37

A similar result on the minimax property of Stein's estimator

is obtained for the generalized loss (1.3).

2.Main results. First we compute a Bayes risk of the esti-

mator §(X) given by (1.8), using the loss function (1.3). We

. . 4 .
make the Bayesian assumption 0, UN(0,A) as a convenient mathe-
d

. 2
matical tool. Then marginally, Xi E;N(O, 1+A) and BS < Xi.

Let r be a non-negative integer, and let

T
(2.1) a_ = 2 r(r+d
VITY ot
(2.2) c.= T E (I xXiTysh

==

x K .
G GN/EST)
i=1

27T oy
= ——d

r(§+r) r

*
where E denotes expectation with respect to the marginal

distribution of the Xi's. The second line in (2.2) follows
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K
from the fact that the distribution of (J xfr)/sr does

i=1
not depend on A, that S is a complete and sufficient statistic
k
for A, and hence S and () .‘(ir)/sr are independently distri-
i=1 '
* 2r
buted. Note that E Xi = dr'

Conditionally, given Xi
(2.3) 6.0%X. IN((1-B)X.,1 - B)
i' 71 1’

Using (2.3) we obtain after simplification, the Bayes risk of

§(X), given by

. mn 2m r.® . m-r .. S 2m-2T1
(2.4) o(B,8) =] o Snox dr () (1-B)7E (STU(B(S)-B) )
r=
m-r. Kk
m om. - F(z*m-n) . .
= - 2 T
=1 2 Smer d. Gyp) )5 B " (1-B)
r=0 F(—Z')
(= 2 2m-2
!B(Xk+2m-°r/B) } r
E B - 1
[ |
_m
=1
r=0 T
where
ar = cm—r dr




Zm
2 5™ T(r+3) T(n-r+3)

’ m
| (r) dm :

[ ez

The Bayes risk of Stein's estimator is obtained by

%
k-2 . i
'J putting B(S) = g- in (2.4). Then i
]
2m-2r §
* m - .
¥ (2.5) o(B,5) = § a. B"T(1-B)7 5{573___—— -1 §
r=0 Ak+2m-271 %
: ;
é =1 aB"VT-B)T F(-ame2r, 52 omer;-RiY
| m v, o ;
| = Zr=0 a_ b B T(1-B) :
where
‘ 2
3 . _ a ala+l) x~
2la,bixd = 1+ g X+ popyy 37 ¢

' denotes the confluent hvpergeometric function, and

1 (2.6) - 2 (-2m+2r, -kéz- m+r; -kz‘)

o
1]
tol

Remark 1l: We have that bm 1 and bra 0 as k+= for r< m.

The cornfluent hypergeometric function >(a,b;x) satisfies the

equation
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(48]

X

dr
4 + (b-x) 3% - ay = 0

~

The .above equation shows that for a<0, y>0 and b<x <0, y

is a convex function of x when %%2_0. Therefore, if v = 0

for x = -« then %ﬁg_o for'all x< 0. Hence, br is decreasing

in k for r <m, and therefore there is a minimum value of

k = km, say, depending on m, such that brj_l for r = 0,1,...,m
and all kg_km. Numerical computation shows that km is the mini-

mum value of k for which by<1. Since

0 n -
o(B,87) = § a BVT(1-B)T=-g
=0 m
we have from (2.5) that
- *

(2.7) 5(B,67) <0(B,8°).
for kz_km and all values of B.

d 2 . .

Let V _ xk(X), a non-central chi-squared with k degrees

of freedom and non-centrality parameter \ = 1!9{12. The

o . *’~ \*
following lemma gives a formula for R (*,3 ), the average

~ * N T
value of R(3,¢ ) on the sphere lie.lz = A,

Lemma 2.1.

i . x & F(j) _m _ RO
(2.8 R8s =T DT EGCr i ()
r(s-n) r=0 - e =
m r A}
T _
-1 Gl Gt D3me S




-9_

d

Proof: Let U gxﬁ/B. Apriori, ei - N(0,A). Therefore

'f !{Sliz d A;(i.The right side of (2.8) is a function of

2 ¢ 2 . . .
[19]1° equal to g(|{6]]°), say. Taking expectation with

2
respect to the distribution of ||8]|]|~, we get

(2.9)

k 4
2 r(3) m _ _
Eglloll) = ——1 Dfap, BE(ECrEm DG
T [} F(f-m) r::O < o
; 1 "
| =7 arerm-r(l_B)r

: =0

o(B,8") from (2.5)

Since ei gN(O,A), the conditional distribution of

~
IS -

5 given {]9[]|° = A is uniform on the sphere | /39|~ = &

Therefore

(2.10)

where the expectation on the right side of (2.10) is with
! B

respe -

t to the distribution of | '3{!~. Since the distribution

2]

|\’
3t
AN

=)

of ',

is complete for B, from (2.¢Y) and (2.19) we have

B3 ol F 3 2

(2.11) R (if9y1 7,8y =¢(!'=17)

L

for all values of ')9;|. Trom (2.11) we get the first

equality in (2.8). The second line in (2.8) is obtained ftrom

the first line, using the following formula.

rri—m+t+r)

vLomet SN/2 e
= e / .

-

'
O

(]
—
[§S)
—
=1
N
i 4
o
i
raf -~
—
[

+1)}
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k
v/9 plz-m+t)
g2 L2 5 E-mee, 5 D
k 42 2 2
I‘(—Z')
rmee) _ SN
= k Q(m-t: 7; '2’)
F(j)
The lemma is proved. Q.E.D.
Remark 2: The formula (2.8, can be written as
(2.13) Kk
* * m r t r(z) V.-m+t
R8s ) =1 (Dfab [ 1 (]) ———EG)
r=0 T'T "o t T(5-m+t) Z
m Vi-m+t
=) e, E()
t=0 ¢ Z
where
k
m r(s)
T+t T 2
(2.14) e, = ) (-1)" "a b _(,) —f—
t r=t rrt F(%-m+t)
The values of e, for t = m and m - 1 are computed easily.
We have e = d_ and
m m
it
. . (k-2)"
-1 % ™y

Note that the risk of the maximum likelihood estimator is

equal to dm and that for m = 1, that is for squared error loss,
we have
% ® 2 %

(2.15) R(8,5 ) = R ({]8!{7,5)

N ST Ry

= 1 min E T

1
0

4
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We shall now obtain the main result. Let m>1.
From the integral representation of the confluent hyper-

geometric function, given by

2(a,b,;x) = ?Eg% 575 eXu 3 1oy yb-alyy psaso
i 0

we find that the value of §(m-t,§;-%) lies between 0 and 1,
and that it tends to 1 as k+«. Since bm = 1 and br-»O as

k+» for r<m, from (2.8) we have that
* *
(2.16) R (A,8 )+-0 as k-»=,

On the other hand, as A+« the summation in the second line
on the right side of (2.13) is dominated by the sum of two

terms, equal to

,
2 V-1 _ (k-2)° =m
(....17) em + em_l E(Z) = dm(]. —T——— E?).

¢ a (1-mk-2)° )
m k(k+ ) )
Hence
. % %
(2.18) R (x,s ) d

m
for sufficiently large values of A.

Next we consider the case in which both k and A are large.

Expanding br’ given by (2.6), in negative powers of k we find

By

that b_ =1, b = =2 and b = O(k'z) for r<m-1. Therefore,
m m-1 k T

for large k, the summation on the right side of (2.8) is

dominated bv the sum of two terms, equal to D, say where

3
-
1o

= T T Y NS im- cod
(2.19) D =7 (-1""a b} (-1)"(Jalm-t, 5)
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- m T —_ 1
- ML enfap I CDIRIG )

K .k
n r F(§-meteT) T ()
= E (-1)Ta_b 1
zr=m-1 rr zt=o Er 3T I’(%-m«‘t)
o NSO LT D RN CPOLTCO I 2 L TR | S
r=m-1 T Te=0 toTek/2 T t
£ 0(k8)

where T is a random variable distributed according to the

Poisson distribution with mean equal to A/2 and c, =

t
(m-t)(m-t+1)/2. After simplification we get
m-lT- _I
T i T+2m m(m+1)k/2 ! -2
p = d_E - ==l i+ 0(k ).
m kT+k/2 LT+ 2 2(,[,+1</2)2

T (m-1 -2

where gk(T) <1 for k>4m. Now

-~
-

T m-1 T
E(T+k/2 iE{TH\'/ZJ
k/2

R VA

=1 - K

=1 X+ K

<1 - 1 for <k2

— l.yk -
Therefore

E I 1
R (,\,S ) Lm




13-

for sufficiently large k and A_gkz. On the other hand, from
(2.13) and (2.17) it follows that the above inequality holds
also for fficiently large k and A_ikz. Therefore, we have

the following theorem.

Theorem 2.1. Let X = l|e]|2. Given a positive integer m,

*
there exists a value of k = km, say, depending on m, such

% % *
that, R (1,87) <d_ = R(9,6%) for all 6 and K>k

Next we show that Stein's estimator is minimax in an

empirical Bayes sense. From (2.4) we have

(- 2r
~ m . B(W_) }
(2.20)  p(B,8) =d_ 7 MsBra-1™ T E r_ .1
m _ T B ]
r=0 L )
a2 .
where W ‘“Xk+’r/B' In deriving the above result we have
assumed that Si g)MO,A). e can stop short of full Bayesian-

hood by assuming that A or equivalently B, is unknown and must
be estimated. That is, we become empirical Bayesian, considering
ﬁ(wr) as an estimate of B.

Consider a beta prior distribution on B with density

function

n-1 T (§+n)

_ no 1l .
g(B) =B (1 B) F(&)T(n) ’

>0, n>0,

Let

2(B,6) = (o(B,6) = (1-B)"d )/B
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From (2.20) we have

(2.21)
3 12r
1 ~ m 1 B(W.) ‘
T myor-1,,_ m—r{ roo.
fOQ(B.é)g(B)dB.:L deo(r)B A-5)™ T —T - 1] g(8)as
r=

where 1k
3

(1-ByM" T+n" 1 BW, /24

B(Wr)

N
5+E-2 - -1 -BW /2 .
[ g T pymTenl BN /2,

(3+ - )3 g, 3rmeregen; -W/2)

Kem-regen-1)3(3+6-1,3wm-r+gen-1; W _/2)

From the asymptotic property of the confluent hypergeometric

function (see e.g. Erdelyi (1953) §6.13.1) it is seen that

NOB(W) .,

) ) (W - _T -~ 2 2
{2.22) )(Hr) > T

T
-]

- as W_ -,
2 T

Let £+ 0. Then B converges in distribution to zero and

wr converges in distribution to ». Therefore, v(Wr) converges

in distribution to 1, and from (2.21) we have

(2.23)
Sup’(B,3) > Lim ( 2(B, ) g(B)dB
B =0 10
‘1o m r-1
1 Y m m-r_ k-2 or
ok dm}0(1r=1(r‘3 (-3 TE (g (W) - 1077 g (B)dB
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s m

1
=Lim d_| (E
g-0 Mo

r-1 . 5 Ly
(B )" TE(EE -1)%Tg(8)aB
r= T

1 *
Lim ( w(B,5 )g(B)dB
£+0 /0

) am-l bm—l

2m
73 dm

* *%
Sup (3,8 } for k>k , say.
B -'m

The last equality in (2.23) follows from the fact that
-2
br = 0(k ™) for r<m - 1. Thus we have obtained the following

result from the empirical Baves approach, considered above.

Theorem 2.2. The minimax value of the Baves risk 5(B,3) is

2m * * %
equal to T dn = Sup ¢{B,5 ) for k> km
' B

Remark 3: Clearly, the results given above are appli-
cable to the case in which the loss is a polvnomial function
of the squared error with non-negative coetficients. [t
might Ee possible to extend the ygiven rosults to the case in
which the loss is a monotone increasing convex function of
the squared error.

] %%
Table I below gives values of km and km for m = 1(1)10.

%
For the aiven values of m it is found that Km = km where kn is

the smallest value of k for which (2.7) holds. Table II below

* ® *
gives values of R (+,5 )/dm form = 1¢1)10 and » and k = &k_,

m

e L . T ———————
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Note that R(e,éo) = dm' The asymptotic formula for large
negative values of the argument of the confluent hypergeo-
metric function, given by

3(a,b;-x) = {—%—ﬁ x'a(1+0(x'1)j

* *
was used in the computation of R (A,8 } for A = 100, 1000.

* %%
TABLE I - Values of km and km

m 1 2 3 4 5 6 7 8 9 10

km 3 5 7 10 12 15 17 20 22 25
%
k 3 5 3 10 13 15 18 21 24 27
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* %
TABLE II - Values of R (1,6 )/dm for k = k

m

' \ meo1 2 3 4 5 6 7 8 9 10 l
B v
: j 0.6666|.5714(.8581(.53011.8640|.5758{.9178(.6247/.6779|.6724 %
1].7584.5294|.6444|.4004{.6176(.4202|.6532(.4522!.6959|.4851 I
21.8206(.5239(.5137(.3140|.4513(.3119|.4709|.3311|.5000!.3531 i

; 5/.8634(.5379(.4377(.2573|.3385|.2360|.3444|.2455!.3631,.2594
¥ 41.8933|.5615{.3976(.2212{.2620(.1826|.2560].1845(.2666{.1925 }

5/.9145(.5889(.3808|.1997|.2101{.1447|.1937(.1407|.1981/.1444

1 6.9299(.6170(.3790{.1886|.1753{.1179|.1494|.1089|.1491|.1095

| 71.9412(.6440/|.3866(.1849(.1525.0989/.1178|.0858].1138|.0841
10{.9614|.7132/.4557|.2008.1264|.0703(.0669 .0468 .0554 .0410
15/.9757(.7899|.5302|.2640|.1454].0672|.0442|.0257/.0236].0165 !
20/.9823|.8361|.6066|.3346|.1899].0863|.0477/.0231|.0161;.009" !
. 25].9860|.8661).6642!.3995].2405].1152|.0618].0278].0160].0082 ;
| 100!.9966|.9642].3958|.7640].6397].4744].3515].2207|.1410] .07 20 g
Q 1000{.9996!.9964|.9893|.9746|.9589|.9340.9105!.8769,.8465}.8061 ;
.
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